Tuesday, July 16, 2024

Problems in Methods of Estimation of Evaporation

Here are numerical examples with solutions for each method of estimating evapotranspiration (ET):

1. Pan Evaporation Method

Example: Suppose a Class A evaporation pan is located near a crop field. The pan evaporation rate is measured to be 6 mm/day. The pan coefficient (Kp) for the area is 0.8.

Solution: The Pan Evaporation Method formula is used to estimate the reference evapotranspiration (ET₀) based on the evaporation rate from a Class A evaporation pan. The formula is:

ET0=Kp×Ep​

Where:

  • ET0 = Reference evapotranspiration (mm/day)
  • Kp = Pan coefficient (dimensionless)
  • Ep = Pan evaporation rate (mm/day)

Given data:

  • Pan evaporation rate (Ep) = 6 mm/day
  • Pan coefficient (Kp) = 0.8

Using the Pan Evaporation Method formula:

ET0=Kp×Ep                           ​

ET0=0.8×6
ET0=4.8 mm/day

So, the estimated reference evapotranspiration (ET₀) using the Pan Evaporation Method is 4.8 mm/day.


2. Penman Method for Estimating Evapotranspiration

The Penman method estimates reference evapotranspiration (ET₀) by combining the effects of temperature, humidity, wind speed, and solar radiation. The Penman equation is:

The Penman-Monteith method is an advanced and widely accepted method for estimating reference evapotranspiration (ET₀). It combines various climatic parameters to provide a precise estimate. The FAO-56 Penman-Monteith equation is:

ET0=0.408Δ(RnG)+γ900T+273u2(esea)Δ+γ(1+0.34u2)ET_0 = \frac{0.408 \Delta (R_n - G) + \gamma \frac{900}{T + 273} u_2 (e_s - e_a)}{\Delta + \gamma (1 + 0.34 u_2)}

Where:

  • ET0= Reference evapotranspiration (mm/day)
  • Δ\Delta = Slope of the saturation vapor pressure curve (kPa/°C)
  • RnR_n = Net radiation at the crop surface (MJ/m²/day)
  • GG = Soil heat flux density (MJ/m²/day)
  • γ\gamma = Psychrometric constant (kPa/°C)
  • TT = Mean daily air temperature (°C)
  • u2u_2 = Wind speed at 2 meters height (m/s)
  • es = Saturation vapor pressure (kPa)
  • eae_a = Actual vapor pressure (kPa)

Numerical Example 1: Estimating ET₀ in a Warm Climate

Given Data:

  • Net radiation (Rn) = 15 MJ/m²/day
  • Soil heat flux density (GG) = 0.0 MJ/m²/day (for daily estimates)
  • Air density (ρa\rho_a) = 1.225 kg/m³
  • Specific heat of air (cpc_p) = 0.001013 MJ/kg·K
  • Saturation vapor pressure (ese_s) = 3.2 kPa
  • Actual vapor pressure (eae_a) = 2.0 kPa
  • Wind speed (uu) = 3.0 m/s
  • Latent heat of vaporization (λ\lambda) = 2.45 MJ/kg
  • Psychrometric constant (γ\gamma) = 0.066 kPa/°C

Assume the slope of the saturation vapor pressure curve (Δ\Delta) is 0.20 kPa/°C.

Steps to Solve:

  1. Calculate the numerator:

Δ(RnG)=0.20×(150)=3.0

ρacp(esea)uλ=1.225×0.001013×(3.22.0)×3.0 {2.45}


=1.225×0.001013×1.2×1.224= 1.225 

1.224

=0.00268×1.224=0.0033 (MJ/m²/day)   

Numerator=3.0+0.0033=3.0033 MJ/m²/day  

  1. Calculate the denominator:

Δ+γ×(1+uλ)

=0.20+0.066×(1+3.02.45   

=0.20+0.066×(1+1.224)       =   

=0.20+0.066×2.224=0.20+0.146  =

=0.346 kPa/°C     = 0

  1. Calculate ET₀:

ET0=Numerator/Denominator

=\frac{3.0033}{0.346}

8.67 mm/day\approx 8.67

Numerical Example 2: Estimating ET₀ in a Cooler Climate

Given Data:

  • Net radiation (RnR_n) = 10 MJ/m²/day
  • Soil heat flux density (GG) = 0.0 MJ/m²/day (for daily estimates)
  • Air density (ρa\rho_a) = 1.225 kg/m³
  • Specific heat of air (cpc_p) = 0.001013 MJ/kg·K
  • Saturation vapor pressure (ese_s) = 1.8 kPa
  • Actual vapor pressure (eae_a) = 1.2 kPa
  • Wind speed (uu) = 1.5 m/s
  • Latent heat of vaporization (λ\lambda) = 2.45 MJ/kg
  • Psychrometric constant (γ\gamma) = 0.066 kPa/°C

Assume the slope of the saturation vapor pressure curve (Δ\Delta) is 0.15 kPa/°C.

Steps to Solve:

  1. Calculate the numerator:

Δ(RnG)=0.15×(100)=1.5\Delta \cdot (R_n - G) = 0.15 \times (10 - 0) = 1.5

ρacp(esea)uλ=1.225×0.001013×(1.81.2)×1.52.45\rho_a \cdot c_p \cdot (e_s - e_a) \cdot \frac{u}{\lambda} = 1.225 \times 0.001013 \times (1.8 - 1.2) \times \frac{1.5}{2.45}

  ​=1.225×0.001013×(1.81.2)×2.451.5

=1.225×0.001013×0.6×0.612= 1.225 \times 0.001013 \times 0.6 \times 0.612

=0.00074 (MJ/m²/day)= 0.00074 \text{ (MJ/m²/day)}

Numerator=1.5+0.00074=1.50074 MJ/m²/day\text{Numerator} = 1.5 + 0.00074 = 1.50074 \text{ MJ/m²/day}

  1. Calculate the denominator:

Δ+γ×(1+uλ)\Delta + \gamma \times \left(1 + \frac{u}{\lambda}\right)

=0.15+0.066×(1+1.52.45)= 0.15 + 0.066 \times \left(1 + \frac{1.5}{2.45}\right)

=0.15+0.066×(1+0.612)= 0.15 + 0.066 \times \left(1 + 0.612\right)

=0.15+0.066×1.612=0.15+0.106= 0.15 + 0.066 \times 1.612 = 0.15 + 0.106

=0.256 kPa/°C= 0.256 \text{ kPa/°C}

  1. Calculate ET₀:

ET0=Numerator/DenominatorET_0 = \frac{ \text{Numerator} }

=1.500740.256

5.86 mm/day

2. Penman-Monteith Method

Example: Consider the following climatic data for a crop field:

  • Net radiation (Rn) = 15 MJ/m²/day
  • Soil heat flux density (G) = 0 MJ/m²/day
  • Mean daily air temperature (T) = 25°C
  • Wind speed at 2 m height (u2) = 3 m/s
  • Saturation vapor pressure (es) = 3.2 kPa
  • Actual vapor pressure (ea) = 2.1 kPa
  • Psychrometric constant (γ) = 0.066 kPa/°C
  • Slope of the vapor pressure curve (Δ) = 0.188 kPa/°C

Solution: To solve the given climatic data using the Penman-Monteith method for estimating reference evapotranspiration (ET₀), we use the FAO-56 Penman-Monteith equation:

ET0=0.408Δ(RnG)+γ900T+273u2(esea)Δ+γ(1+0.34u2)ET_0 = \frac{0.408 \Delta (R_n - G) + \gamma \frac{900}{T + 273} u_2 (e_s - e_a)}{\Delta + \gamma (1 + 0.34 u_2)}

Given data:

  • Net radiation (Rn) = 15 MJ/m²/day
  • Soil heat flux density (G) = 0 MJ/m²/day
  • Mean daily air temperature (T) = 25°C
  • Wind speed at 2 m height (u2) = 3 m/s
  • Saturation vapor pressure (ese) = 3.2 kPa
  • Actual vapor pressure (eae) = 2.1 kPa
  • Psychrometric constant (γ) = 0.066 kPa/°C
  • Slope of the vapor pressure curve (Δ) = 0.188 kPa/°C

Let's solve the equation step by step.

Step 1: Calculate the first term of the numerator

0.408Δ(RnG)=0.408×0.188×(150)

=0.408×0.188×15= 0.408 \times 0.188 \times 15

=1.14936 mm/day= 1.14936 \text{ mm/day}

Step 2: Calculate the second term of the numerator

γ900T+273u2(esea)       =0.066×90025+273×3×(3.22.1)

=0.066×3.02×3×1.1= 0.066       

=0.066×9.06×1.1= 0.066 

=0.066×9.966= 0.066 

=0.657 mm/day= 0.657 

Step 3: Sum the terms of the numerator

1.14936+0.657=

Step 4: Calculate the denominator


Δ+γ(1+0.34u2)=0.188+0.066(1+0.34×3)

=0.188+0.066(1+1.02)= 0.188 + 0.066 (1 + 1.02)

=0.188+0.066×2.02= 0.188 + 0.066 

=0.188+0.13332= 0.188 + 0.13332

=0.32132 kPa/°C

Step 5: Calculate ET₀

ET0=1.80636/ 0.32132

=5.62 mm/day

So, the estimated reference evapotranspiration (ET₀) using the Penman-Monteith method is approximately 5.62 mm/day.

Numerical Example 1: Estimating ET₀ in a Warm Climate

Given Data:

  • Mean daily temperature (T) = 25°C
  • Net radiation (Rn) = 15 MJ/m²/day
  • Soil heat flux density (G) = 0.0 MJ/m²/day
  • Wind speed (u2) = 3 m/s
  • Saturation vapor pressure (ese) = 3.2 kPa
  • Actual vapor pressure (eae) = 2.0 kPa
  • Psychrometric constant (γ) = 0.066 kPa/°C
  • Slope of the saturation vapor pressure curve (Δ) = 0.188 kPa/°C

Steps to Solve:

  1. Calculate the first term of the numerator:

0.408Δ(RnG)=     0.408×0.188×(150)     =  1.14864 mm/day

  1. Calculate the second term of the numerator:

γ900T+273u2(esea)=0.066×90025+273×3×(3.22.0)             

  = 0.066×10.854  =

  1. Sum the terms of the numerator:

1.14864+0.715164=

  1. Calculate the denominator:

Δ+γ(1+0.34u2)=0.188+0.066(1+0.34×3)

=0.188+0.066(1+1.02)

= 0.188 + 0.066 (1 + 1.02)

 

=0.188+0.066×2.02

  1. Calculate ET₀:

ET0=1.863804/0.32132    

Numerical Example 2: Estimating ET₀ in a Cooler Climate

Given Data:

  • Mean daily temperature (T) = 15°C
  • Net radiation (Rn) = 10 MJ/m²/day
  • Soil heat flux density (G) = 0.0 MJ/m²/day
  • Wind speed (u2u_2) = 2 m/s
  • Saturation vapor pressure (ese_s) = 1.7 kPa
  • Actual vapor pressure (eae_a) = 1.0 kPa
  • Psychrometric constant (γ\gamma) = 0.066 kPa/°C
  • Slope of the saturation vapor pressure curve (Δ\Delta) = 0.143 kPa/°C

Steps to Solve:

  1. Calculate the first term of the numerator:

0.408Δ(RnG)=0.408×0.143×(100)0.408 \Delta (R_n - G) = 0.408 \times 0.143 \times (10 - 0)


=0.408×0.143×10= 0.408 \times 0.143 \times 10 =0.58464 mm/day= 0.58464 \text{ mm/day}

  1. Calculate the second term of the numerator:

γ900T+273u2(esea)=0.066×90015+273×2×(1.71.0)        =0.066×3.125×2×0.7= 0.066 \times 3.125 \times 2 \times 0.7 =0.066×4.375= 0.066 \times 4.375 =0.28875 mm/day= 0.28875 \text{ mm/day}

  1. Sum the terms of the numerator:

0.58464+0.28875=0.87339 mm/day

  1. Calculate the denominator:

Δ+γ(1+0.34u2)=0.143+0.066(1+0.34×2)   

   = 0.143+0.066×1.68

   = 

  1. Calculate ET₀:

ET0=0.873390.25388

3. Blaney-Criddle Method for Estimating Evapotranspiration

The Blaney-Criddle method is a practical and widely used approach for estimating reference evapotranspiration (ET₀) based on temperature and daylight hours. The formula is given by:

ET0=p(0.46T+8.13)

Where:

  • ET = Reference evapotranspiration (mm/day)
  • p = Mean daily percentage of annual daytime hours
  • T = Mean daily temperature (°C)

Numerical Example 1: Estimating ET₀ for a Summer Month

Given Data:

  • Mean daily temperature (T) = 25°C
  • Mean daily percentage of annual daytime hours (p) = 0.30 (for a specific location and time of the year)

Steps to Solve:

  1. Calculate the product of the mean daily temperature and the coefficient 0.46:

0.46T=0.46×25=11.50.46T = 0.46 \times 25 = 11.5

  1. Add 8.13 to the above result:

0.46T+8.13=11.5+8.13=19.63

  1. Multiply the result by the mean daily percentage of annual daytime hours (p):

ET0=p(0.46T+8.13)=0.30×19.63=5.889ET_0 = p \left(0.46T + 8.13\right) = 0.30 \times 19.63 = 5.889

  1. Round to a practical precision:

ET05.89 mm/dayET_0 \approx 5.89 \text{ mm/day}

So, the estimated reference evapotranspiration (ET₀) for the summer month is 5.89 mm/day.

Numerical Example 2: Estimating ET₀ for a Winter Month

Given Data:

  • Mean daily temperature (T) = 10°C
  • Mean daily percentage of annual daytime hours (p) = 0.15 (for a specific location and time of the year)

Steps to Solve:

  1. Calculate the product of the mean daily temperature and the coefficient 0.46:

0.46T=0.46×10=4.60.46T = 0.46 \times 10 = 4.6

  1. Add 8.13 to the above result:

0.46T+8.13=4.6+8.13=12.730.46T + 8.13 = 4.6 + 8.13 = 12.73

  1. Multiply the result by the mean daily percentage of annual daytime hours (p):

ET0=p(0.46T+8.13)=0.15×12.73=1.9095

  1. Round to a practical precision:

ET01.91 mm/dayET_0 \approx 1.91 \text{ mm/day}

So, the estimated reference evapotranspiration (ET₀) for the winter month is 1.91 mm/day.

4. Hargreaves Method

Example: Assume you have the following data for a crop field:

  • Mean daily temperature (Tmean) = 22°C
  • Maximum daily temperature (Tmax) = 30°C
  • Minimum daily temperature (Tmin) = 15°C
  • Extraterrestrial radiation (Ra) = 25 MJ/m²/day

Solution: To estimate the reference evapotranspiration (ET₀) using the Hargreaves method, we will use the following formula:

ET0=0.0023×(Tmean+17.8)×(TmaxTmin)0.5×RaET_0 = 0.0023 \times (T_{mean} + 17.8) \times (T_{max} - T_{min})^{0.5} \times R_a

Given data:

  • Mean daily temperature (TmeanT_{mean}) = 22°C
  • Maximum daily temperature (TmaxT_{max}) = 30°C
  • Minimum daily temperature (TminT_{min}) = 15°C
  • Extraterrestrial radiation (RaR_a) = 25 MJ/m²/day

Step-by-Step Solution:

  1. Calculate the temperature difference and its square root:

TmaxTmin=3015=15

(TmaxTmin)0.5=153.87(T_{max} - T_{min})^{0.5} = \sqrt{15} \approx 3.87

  1. Apply the Hargreaves equation:

ET0=0.0023×(Tmean+17.8)×(TmaxTmin)0.5×RaET_0 = 0.0023 \times (T_{mean} + 17.8) \times (T_{max} - T_{min})^{0.5} \times R_a

ET0=0.0023×(22+17.8)×3.87×25ET_0 = 0.0023 \times (22 + 17.8) \times 3.87 \times 25

  1. Simplify the equation step-by-step:

ET0=0.0023×39.8×3.87×25ET_0 = 0.0023 \times 39.8 \times 3.87 \times 25

ET0=0.0023×39.8×96.75ET_0 = 0.0023 \times 39.8 \times 96.75

ET0=0.0023×3850.05ET_0 = 0.0023 \times 3850.05

ET08.86 mm/dayET_0 \approx 8.86 \text{ mm/day}

So, the estimated reference evapotranspiration (ET₀) for the given data using the Hargreaves method is approximately 8.86 mm/day.

Numerical Example 1: Estimating ET₀ in a Warm Climate

Given Data:

  • Mean daily temperature (Tmean) = 25°C
  • Maximum daily temperature (Tmax) = 35°C
  • Minimum daily temperature (Tmin) = 15°C
  • Extraterrestrial radiation (Ra) = 20 MJ/m²/day

Steps to Solve:

  1. Calculate the temperature difference and its square root:

TmaxTmin=3515=20


(TmaxTmin)0.5=204.47(T_{max} - T_{min})^{0.5} = \sqrt{20} \approx 4.47

  1. Apply the Hargreaves equation:

ET0=0.0023×(Tmean+17.8)×(TmaxTmin)0.5×Ra​

ET0=0.0023×(25+17.8)×4.47×20ET_0 = 0.0023 \times (25 + 17.8) \times 4.47 \times 20

  1. Simplify the equation step-by-step:

ET0=0.0023×42.8×4.47×20ET_0 = 0.0023 \times 42.8 \times 4.47 \times 20

ET0=0.0023×42.8×89.4ET_0 = 0.0023 \times 42.8 \times 89.4

ET0=0.0023×3826.32ET_0 = 0.0023 \times 3826.32

ET08.80 mm/dayET_0 \approx 8.80 \text{ mm/day}

So, the estimated reference evapotranspiration (ET₀) for the warm climate is 8.80 mm/day.

Numerical Example 2: Estimating ET₀ in a Cooler Climate

Given Data:

  • Mean daily temperature (TmeanT_{mean}) = 10°C
  • Maximum daily temperature (TmaxT_{max}) = 15°C
  • Minimum daily temperature (TminT_{min}) = 5°C
  • Extraterrestrial radiation (RaR_a) = 15 MJ/m²/day

Steps to Solve:

  1. Calculate the temperature difference and its square root:

TmaxTmin=155=10T_{max} - T_{min} = 15 - 5 = 10,              (TmaxTmin)0.5=103.16(T_{max} - T_{min})^{0.5} = \sqrt{10} \approx 3.16

  1. Apply the Hargreaves equation:

ET0=0.0023×(Tmean+17.8)×(TmaxTmin)0.5×RaET_0 = 0.0023 \times (T_{mean} + 17.8) \times (T_{max} - T_{min})^{0.5} \times R_a

ET0=0.0023×(Tmean+17.8)×(TmaxTmin)0.5×Ra

ET0=0.0023×(10+17.8)×3.16×15
                                                                                                                                                             
ET_0 = 0.0023 \times (10 + 17.8) \times 3.16 \times 15

  1. Simplify the equation step-by-step:

ET0=0.0023×27.8×3.16×15ET_0 = 0.0023 \times 27.8 \times 3.16 \times 15

ET0=0.0023×27.8×47.4ET_0 = 0.0023 \times 27.8 \times 47.4

ET0=0.0023×1318.92ET_0 = 0.0023 \times 1318.92

ET03.03 mm/dayET_0 \approx 3.03 \text{ mm/day}

So, the estimated reference evapotranspiration (ET₀) for the cooler climate is 3.03 mm/day.


5. Thornthwaite Method

Thornthwaite Method for Estimating Evapotranspiration

The Thornthwaite method estimates potential evapotranspiration (ET₀) primarily based on temperature and day length. This method is suitable for use when only temperature data is available. The Thornthwaite equation is:

ET0=16(10TI)aET_0 = 16 \left(\frac{10 \cdot T}{I}\right)^a

Where:

  • ET0ET_0 = Potential evapotranspiration (mm/month)
  • TT = Mean monthly temperature (°C)
  • II = Heat index, calculated as the sum of monthly heat indices for the year
  • aa = Empirical exponent, calculated using the equation: a=(6.75×107)I3(7.71×105)I2+(1.792×102)I+0.49239a = (6.75 \times 10^{-7})I^3 - (7.71 \times 10^{-5})I^2 + (1.792 \times 10^{-2})I + 0.49239

Step-by-Step Calculation:

  1. Calculate the Monthly Heat Index (ii): i=(T5)1.514                 i = \left(\frac{T}{5}\right)^{1.514}   

  2. Calculate the Annual Heat Index (II): I=m=112imI = \sum_{m=1}^{12} i_m

  3. Calculate the Empirical Exponent (aa): a=(6.75×107)I3(7.71×105)I2+(1.792×102)I+0.49239                                     a = (6.75 \times 10^{-7})I^3 - (7.71 \times 10^{-5})I^2 + (1.792 \times 10^{-2})I + 0.49239

  4. Calculate the Monthly ET₀: ET0=16(10TI)aET_0 = 16 \left(\frac{10 \cdot T}{I}\right)^a

Numerical Example 1: Estimating ET₀ in a Warm Climate

Given Data:

  • Mean monthly temperature (TT) = 25°C for each month

Steps to Solve:

  1. Calculate the Monthly Heat Index (ii):

i=(T5)1.514
=(255)1.514
i = \left(\frac{25}{5}\right)^{1.514}
 

11.77i \approx 11.77

  1. Calculate the Annual Heat Index (II):

Since the temperature is the same each month:

I=12×11.77=141.24I = 12 \times 11.77 = 141.24

  1. Calculate the Empirical Exponent (aa):

a=(6.75×107)I3(7.71×105)I2+(1.792×102)I+0.49239a = (6.75 \times 10^{-7})I^3 - (7.71 \times 10^{-5})I^2 + (1.792 \times 10^{-2})I + 0.49239 a=(6.75×107)(141.24)3(7.71×105)(141.24)2+(1.792×102)(141.24)+0.49239a = (6.75 \times 10^{-7})(141.24)^3 - (7.71 \times 10^{-5})(141.24)^2 + (1.792 \times 10^{-2})(141.24) + 0.49239 a0.0131a \approx 0.0131

  1. Calculate the Monthly ET₀:

ET0=16(1025141.24)0.0131                                                                                           ET016.2 mm/monthET_0 \approx 16.2 \text{ mm/month}

So, the estimated potential evapotranspiration (ET₀) for the warm climate is 16.2 mm/month.

Numerical Example 2: Estimating ET₀ in a Cooler Climate

Given Data:

  • Mean monthly temperature (TT) = 10°C for each month

Steps to Solve:

  1. Calculate the Monthly Heat Index (ii):

i=(T5)1.514i = \left(\frac{T}{5}\right)^{1.514} i=(105)1.514i = \left(\frac{10}{5}\right)^{1.514} i=21.514i = 2^{1.514} i2.86i \approx 2.86

  1. Calculate the Annual Heat Index (II):

Since the temperature is the same each month:

I=12×2.86=34.32I = 12 \times 2.86 = 34.32

  1. Calculate the Empirical Exponent (aa):

a=(6.75×107)I3(7.71×105)I2+(1.792×102)I+0.49239                                              a = (6.75 \times 10^{-7})I^3 - (7.71 \times 10^{-5})I^2 + (1.792 \times 10^{-2})I + 0.49239 a=(6.75×107)(34.32)3(7.71×105)(34.32)2+(1.792×102)(34.32)+0.492390.498a \approx 0.498

  1. Calculate the Monthly ET₀:

ET0=16(101034.32)aET_0 = 16 \left(\frac{10 \cdot 10}{34.32}\right)^a


ET0=16(10034.32)0.498ET_0 = 16 \left(\frac{100}{34.32}\right)^{0.498}

ET_0 = 16 (2.91)^{0.498}

ET016(1.75)ET_0 \approx 16 (1.75) ET028.0 mm/monthET_0 \approx 28.0 \text{ mm/month}

So, the estimated potential evapotranspiration (ET₀) for the cooler climate is 28.0 mm/month.

ETo Prediction using ML Algorithms

ET o  Prediction using ChatGPT and Python Prompt: Help me to do research in the topic " Estimation of Reference Evapotranspiration...